Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Sci Technol ; 89(8): 2105-2117, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38678412

RESUMEN

Photodynamic processes have found widespread application in therapies. These processes involve photosensitizers (PSs) that, when excited by specific light wavelengths and in the presence of molecular oxygen, generate reactive oxygen species (ROS), that target cells leading to inactivation. Photodynamic action has gained notable attention in environmental applications, particularly against pathogens and antibiotic-resistant bacteria (ARB) that pose a significant challenge to public health. However, environmental matrices frequently encompass additional contaminants and interferents, including microplastics (MPs), which are pollutants of current concern. Their presence in water and effluents has been extensively documented, highlighting their impact on conventional treatment methods, but this information remains scarce in the context of photodynamic inactivation (PDI) setups. Here, we described the effects of polyvinyl chloride (PVC) microparticles in PDI targeting Staphylococcus aureus and its methicillin-resistant strain (MRSA), using curcumin as a PS under blue light. The presence of PVC microparticles does not hinder ROS formation; however, depending on its concentration, it can impact bacterial inactivation. Our results underscore that PDI remains a potent method for reducing bacterial concentrations in water and wastewater containing ARB, even in highly contaminated scenarios with MPs.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Microplásticos , Cloruro de Polivinilo , Staphylococcus aureus , Cloruro de Polivinilo/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de la radiación , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química
2.
Photodiagnosis Photodyn Ther ; 45: 103977, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38224724

RESUMEN

To reduce the speed of selection of populations resistant to chemical insecticides, photodynamic inactivation (PDI) against Aedes aegypti is a hot-topic and promising alternative technique to vector control. Temperature is an important factor in the survival of Ae. aegypti larvae and mosquitoes as it influences physiology, behavior, and ecology. This work aimed to evaluate parameters of the biological cycle of Ae. aegypti such as: hatching rate, larval development, adult mosquito longevity, sex ratio, weight, and lethal concentration of larval mortality (LC) through the combination of PDI with different temperatures. The number of larvae found after 48 h suggests that temperature affects hatching rate. Additionally, results showed a delay in development of surviving larvae after PDI when compared to control groups, and there was a reduction in the longevity of mosquitoes that undertook photodynamic action. PDI also led to a predominance of male insects, and observed weight indicates that the inactivation method may have also interfered in mosquito size. The results point to a satisfactory performance of PDI at all tested temperatures. Experimental conditions that were not lethal to all larvae implied that PDI impacts the mosquitoes' biological cycle. Though metabolism and development are improved at higher temperatures, so is PDI action, thus maintaining the net benefit. Therefore, it is assumed that the proposed photolarvicide can be useful in reducing arbovirus transmission, and results invite for future research in different abiotic conditions.


Asunto(s)
Aedes , Fotoquimioterapia , Animales , Masculino , Femenino , Aedes/fisiología , Temperatura , Mosquitos Vectores/fisiología , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Larva
3.
J Water Health ; 21(12): 1922-1932, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38153721

RESUMEN

Antimicrobial photodynamic treatment (aPDT) is a photooxidative process based on the excitation of a photosensitizer (PS) in the presence of molecular oxygen, under specific wavelengths of light. It is a promising method for advanced treatment of water and wastewater, particularly targeting disinfection challenges, such as antibiotic-resistant bacteria (ARB). Research in improved aPDT has been exploring new PS materials, and additives in general. Hydrogen peroxide (H2O2) a widely applied disinfectant, mostly in the food industry and clinical settings, present environmentally negligible residuals at the usually applied concentrations, making it friendly for the water and wastewater sectors. Here, we explored the effects of preoxidation with H2O2 followed by blue light-mediated (450 nm) aPDT using curcumin (a natural-based PS) against methicillin-resistant Staphylococcus aureus (MRSA). Results of the sequential treatment pointed to a slight hampering in aPDT efficiency at very low H2O2 concentrations, followed by an increasing cooperative effect up to a deleterious point (≥7 log10 inactivation in CFU mL-1), suggesting a synergistic interaction of preoxidation and aPDT. The increased performance in H2O2-pretreated aPDT encourages studies of optimal operational conditions for the assisted technology and describes potentials for using the described strategy to tackle the issue of ARB spread.


Asunto(s)
Peróxido de Hidrógeno , Staphylococcus aureus Resistente a Meticilina , Peróxido de Hidrógeno/farmacología , Antagonistas de Receptores de Angiotensina , Aguas Residuales , Inhibidores de la Enzima Convertidora de Angiotensina , Agua
4.
Pest Manag Sci ; 77(5): 2530-2538, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33470514

RESUMEN

BACKGROUND: Resistant populations of Ae. aegypti have been a major problem in arboviruses epidemic areas, generating a strong demand for novel methods of vector control. In this regard, our group has demonstrated the use of curcumin as an efficient photoactive larvicide to eliminate Ae. aegypti larvae. This work was aimed to evaluate the Ae. aegypti (Rockefeller) development under sublethal conditions, using a curcumin/d-mannitol (DMC) formulation. The photolarvicidal efficacy under semi-field and field conditions (wild populations) was also analyzed, as well as the photobleaching and residual activity of DMC. RESULTS: A delay in development time when larvae were exposed to sublethal concentrations of DMC was observed, followed by significant changes in sex ratio and reduction in longevity. DMC also presented a low residual activity when compared to usual larvicides, and had a substantial photolarvicidal activity against wild populations in field trials, achieving 71.3% mortality after 48 h. CONCLUSIONS: Overall, these findings are of great biological importance for the process of enabling the implementation of DMC as a new product in the control of Ae. aegypti larvae, and contributes to the improvement of new plant-based larvicides. © 2021 Society of Chemical Industry.


Asunto(s)
Aedes , Curcumina , Insecticidas , Animales , Insecticidas/farmacología , Larva , Manitol , Mosquitos Vectores , Razón de Masculinidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...